UNION DES COMORES			<u>Examen</u> : Baccalauréat								
MINISTERE DE L'EDUCATION NATIONALE		<u>Durée</u> : 4h 00		<u>Session</u> : 2018				Nbr pages : 1			
NEC	Dhysiana Chimia	<u>Série</u> :	A 1	A2	A4	С	D	G	Stc	Sti	
Week.	Epreuve : Physique Chimie	Coeff.:	2								

Tous les sujets et corrigés des Bac Comoriens sont disponibles sur le site internet : https://lechaya.com/

Exercice 1: (6pts)

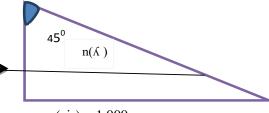
L'énergie hydraulique d'un lac de barrage est proportionnelle à la hauteur de chute d'eau lorsqu'un 1m³ d'eau chute de 368m, on récupère une énergie proche de 1 kilo wattheure. Le barrage d'Itaipu en Amazonie, est l'un de plus grand du monde, il retient 19miliards de m³ d'eau pour un auteur de chute de 196m.

- 1) a. Qu'est-ce qu'une centrale hydroélectrique?
 - **b.** Quelle type de source utilisé cette centrale ? Est-elleépuisable ou renouvelable ?
- 2) a.Quelles sont les formes d'énergiestockées dans l'eau du lac et récupèreaux piedsdes barrages dans l'usinehydroélectrique?
 - **b.** définir les termes : kilowattheureet tonne équivalentpétrole.
- 3) Déterminer en kWhet en joule, l'énergie qui serait récupérées si tout le lac était vidé.et convertissez cette énergie en tep.1tep= 4,18.10¹⁰ J
- 4) a. Quelles sont les modes de transferts utilisés dans la centrale hydraulique.
 - **b.** faire le schéma de la chaine énergique de cette centrale.

Exercice 2: (5.5pts)

Dans un bassin d'essai, une source sonore émet d'un bruit intense qui se propage dans l'air et dans l'eau. Le bruit est reçu par deux récepteurs sonores R_1 dans l'air et R_2 dans l'eau.

- 1) a. Donner la définition d'émetteur sonore et récepteur sonore. Donner un exemple dans chaque cas
 - **b.** Quel est le récepteur qui, le premier, détecte le bruit produit par la source ?



- 2) a. On note Δt la durée séparant les instants t₁ et t₂ de détections du bruit par les récepteurs R₁ et R₂, exprimer la distance d séparant la source des récepteurs en fonction de la durée Δt et des célérités V₁ et V₂ des ondes sonores V₁= 340m/s. V₂=1500m/s
 - **b.** Calculer la valeur de d pour $\Delta t = 0.50$ s.
- 3) La fréquence de son émis est de 20KHz.
 - a. Quelle est le Domain du son, qualifier sa hauteur
 - b. Calculer sa période et sa longueur d'onde dans l'eau
 - **c.** La puissance acoustique de la source est 5W. Quelle est la valeur de l'intensité acoustique reçue à 1 m de la source ? Est- elle douloureux ? Justifier (P=SI) pour l'oreille humaine ?

Exercice 3: (8.5 pts = 5 pt + 3.5 pts)

A. Un faisceau de lumière blanche arrive sur un prisme. Ce prisme est fait dans un matériau transparent tel que son indice de réfraction dépend de la longueur d'onde $n(\Lambda)=1,200+70/\Lambda$ (Λ en nm)

- 1) Qu'est-ce que la lumière blanche ?2) a. A quoi sert le prisme ?
 - **b.** Quelle l'indice de réfraction de la longueur d'onde $\kappa = 650$ nm de la partie rouge du spectre visible.

- n(air) = 1.000
- 3) a. énoncer les lois de Snell-Descarte relative à la réflexion et à la réfraction.
 - **b.** Donner l'expression de l'angle réfracté et calculer sa valeur dans le cas $\lambda = 650$ mm.
- 4) a. Calculer l'indice de réfraction de la longueur situé à l'extrémité des hautes fréquences du spectre visible. $\kappa = 400$ nm et en déduire l'angle réfracté correspondant.
 - **b.** Tracer les marches lumineuses.

B. Question des cours sur l'effet de serre (3,5 pts)

- 1) Qu'est-ce que le Protocole de Kyoto?
- 2) Citer les principaux gaz à effet de serre et en déduire les rôles de chaque gaz dans l'environnement
- 3) Quelles sont les solutions préconisées pour remédier le phénomène de l'effet de serre.

Retrouver les sujets et corrigés des bac comoriens sur la page facebook : lechaya

Baccalauréat, session 2018. Epreuve Ph	ysChim A1 Page: 1/1	
--	---------------------	--